
Communication Analysis of Parallel 3D FFT for

Flat Cartesian Meshes on Large Blue Gene

Systems⋆

A. Chan1, P. Balaji2, W. Gropp3, and R. Thakur2

1 ASCI FLASH Center, University of Chicago
chan@mcs.anl.gov

2 Math. and Comp. Sci. Division, Argonne National Laboratory
{balaji,thakur}@mcs.anl.gov

3 Dept. of Computer Science, University of Illinois, Urbana-Champaign
wgropp@illinois.edu

Abstract. Parallel 3D FFT is a commonly used numerical method in
scientific computing. P3DFFT is a recently proposed implementation
of parallel 3D FFT that is designed to allow scalability to massively
large systems such as Blue Gene. While there has been recent work
that demonstrates such scalability on regular cartesian meshes (equal
length in each dimension), its performance and scalability for flat carte-
sian meshes (much smaller length in one dimension) is still a concern. In
this paper, we perform studies on a 16-rack (16384-node) Blue Gene/L
system that demonstrates that a combination of the network topology
and the communication pattern of P3DFFT can result in early network
saturation and consequently performance loss. We also show that remap-
ping processes on nodes and rotating the mesh by taking the communi-
cation properties of P3DFFT into consideration, can help alleviate this
problem and improve performance by up to 48% in some special cases.

1 Introduction

Fast Fourier Transform (FFT) has been one of the most popular and widely
used numerical methods in many areas of scientific computing, including digital
speech and signal processing, solving partial differential equations, molecular dy-
namics [3], many-body simulations and monte carlo simulations [1, 2, 14]. Given
its importance, there have been a large number of libraries that provide differ-
ent implementations of FFT (both sequential and parallel) aimed at achieving
high-performance in various environments. FFTW [15], IBM PESSL [13], and
the Intel Math Kernel Library (MKL) [9] are a few examples of such implemen-
tations. P3DFFT [6] is a recently proposed parallel implementation of 3D FFT
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that is designed to allow scalability for large problem sizes on massively large
systems such as Blue Gene (BG) [16]. It aims at achieving such scalability by
limiting communication to processes in small local sub-communicators instead
of communicating with all processes in the system.

While there has been previous work that demonstrates the scalability of
P3DFFT for regular 3D cartesian meshes, where all dimensions of the mesh are
of equal length [7], its inability to achieve similar scalability for flat 3D cartesian
meshes, where one dimension is much smaller than the other two, is a known
problem [18]. Flat 3D cartesian meshes are a good tool in studying quasi-2D
systems that occur during the transition of 3D systems to 2D systems (e.g.,
in superconducting condensate [17], Quantum-Hall effect [20] and turbulence
theory in geophysical studies [19]). Thus, such loss of scalability can be a serious
problem that needs to be addressed.

In this paper, we analyze the performance of P3DFFT for flat 3D cartesian
meshes on a large 16-rack (16384-node) Blue Gene/L (BG/L) system. Specifi-
cally, we perform detailed characterization of the communication pattern used by
P3DFFT and its behavior on the BG network topology. We observe that a com-
bination of the network topology and the communication pattern of P3DFFT
can result in parts of the communication to over-saturate the network, while
other parts under-utilize the network. This causes overall loss of performance on
large-scale systems. We also show that carefully remapping processes on nodes
and rotating the mesh by taking the communication properties of P3DFFT into
consideration can help alleviate this problem. Our experimental results demon-
strate up to 48% improvement in performance in some cases.

2 Overview of Parallel 3D FFT Techniques

FFT [8] is an efficient algorithm to compute the Discrete Fourier Transform
(DFT) and its inverse. Fourier transform consists of a forward and a backward
transform. The forward operation transforms a function f(x) in real space X to
a function F(k) in Fourier space K. The backward transform does the reverse
operation that transforms F(k) in Fourier space K to f(x) in real space X. In this
section, we will mainly discuss the forward fourier transform, but the backward
fourier transform can be similarly performed by reversing the steps in the forward
transform.

A typical 3D forward fourier transform for a real-space function f(x,y,z) can
be expressed as follows:

f(kx, ky, kz) =
∑

z

[

∑

y

[

∑

x

f(x, y, z) · eikxx

]

eikyy

]

eikzz (1)

The goal here is to perform a 1D fourier transform on each of the three
dimensions of the 3D data mesh, distributed over P processes. There are two
basic approaches for doing this [11], distributed FFT and transpose-based FFT.
Distributed FFT relies on a parallel implementation of 1D-FFT, with each pro-
cess communicating the necessary data with other processes. Transpose-based
FFT, on the other hand, relies on a sequential version of 1D-FFT that performs
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the transform on one dimension at a time, and transposing the data grid when
needed. There are two different transpose-based FFT strategies for 3D meshes,
which differ in their data decomposition pattern. Let us consider a data grid of
size: nx × ny × nz .

– 1D Decomposition: In the 1D data decomposition technique, the data grid is
divided across P processes such that each process gets a 2D slab of the grid
(size of nx ·ny ·nz/P ). Each process carries out a typical sequential 2D-FFT
on its local slab, and thus does not require any communication during this
operation. Once the 2D-FFT has completed, it transposes the mesh using an
MPI Alltoallv() operation. This allows it to receive data corresponding to
the third dimension, on which a 1D-FFT is applied. Thus, only one global
transpose is used in this technique. However, the drawback is that it only
scales max(nx,ny,nz) number of processes.

– 2D Decomposition: In the 2D data decomposition technique (shown in Fig-
ure 1), one face (2D) of the mesh is divided over P = Prow×Pcol pro-
cesses, so each process contains a column (pencil) of the data mesh of size
nx×(ny/Prow)×(nz/Pcol). Each process first performs a 1D-FFT along
the length of the column (say x-axis). Then it does a transpose on the remain-
ing two axes (y- and z-axis) and performs 1D-FFT on the y-axis. Finally, it
performs a transpose on the y- and z-axes and performs a 1D-FFT on the
z-axis. Two transposes are performed altogether. P3DFFT uses this strategy
as it can theoretically scale up to nx ·ny ·nz / min(nx,ny,nz) processes.

Fig. 1. 2D Decomposition: 1D FFT in each dimension followed by a transpose.

Neither of the transpose based FFT techniques allows for easy overlap of
communication and computation as the transpose where the communication
takes places has to be finished before the local 1D-FFT can be carried out.

3 Related Work

A number of implementations of Parallel 3D FFT exist. FFTW [4] has been a
popular implementation of parallel 3D FFT. While there has been prior litera-
ture [10] that identified issues with its performance and improved its scalability
to some extent, FFTW itself relies on 1D decomposition (described in Section 2)
which allows it to only scale up to a theoretical limit of max(nx,ny,nz) number
of processes. That is, with a problem size of 40963, FFTW cannot use more
than 4096 processors. Thus, it is not ideal to use on massively parallel systems
such as BG which support hundreds of thousands of processors. P3DFFT has
recently been proposed to deal with such scalability issues and allow 3D FFT to
be effectively used on such systems.
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Like P3DFFT, IBM recently proposed an alternate implementation of Paral-
lel 3D FFT, specifically for their BG system, known as BGL3DFFT [12]. How-
ever, BGL3DFFT has several limitations. First, it is a closed source implemen-
tation that restricts much utility for open research. Second, owing to its lack of
Fortran support, it has not gained too much popularity in mainstream scientific
computing. Third, while there is published literature that shows its scalability
for small 3D grids (up to 128×128×128) [12], there is no evidence of its scalability
for larger problem sizes. Keeping the drawbacks of BGL3DFFT aside, we believe
that the problems in handling flat cartesian problems exist in the BGL3DFFT
implementation as well, and that our observations are relevant there too.

There is also previous literature that shows that P3DFFT scales reasonably
well with large regular cubical 3D meshes [7]. However, recently, Joerg Schu-
macher pointed out the importance of 3D-FFT on flat cartesian meshes where
nx = ny > nz in his crossover study from 3D to quasi-2D turbulence systems [18]
and found that 3D-FFT on flat cartesian meshes does not scale as well as regular
cartesian meshes. Our paper uses Joerg’s study as a motivation to understand
the scalability issues of P3DFFT for flat cartesian meshes.

4 Communication Overheads in P3DFFT

In this section, we first present relevant details about the BG network in Sec-
tion 4.1. We next present the communication characteristics of P3DFFT in Sec-
tion 4.3 and an analysis of network saturation caused by such communication in
Section 4.2.

4.1 BG/L Network Overview

BG/L has five different networks [5]. Two of them (1G Ethernet and 100M
Ethernet with JTAG interface) are used for file I/O and system management
while the other three (3-D Torus Network, Global Collective Network and Global
Interrupt Network) are used for MPI communication. The 3-D torus network is
used for point-to-point MPI and multicast operations and connects all compute
nodes to form a 3-D torus; thus, each node has six neighbors. Each link provides
a bandwidth of 175 MB/s per direction for a total of 1.05 GB/s bidirectional
bandwidth per node.

4.2 Analyzing Network Saturation Behavior in P3DFFT on BG/L

As described earlier, unlike regular clusters that use switched network fabrics,
the Blue Gene family of supercomputers relies on a torus network for intercon-
nectivity. Thus, each node is directly connected with only six other nodes. To
reach any other node, the message has to traverse more than one link; this leads
to network link sharing by multiple messages, leading to network saturation.

Since P3DFFT does not directly perform communication with all processes in
the system, but rather communicates only with processes in its row and column
sub-communicators, the network saturation behavior is tricky. In Figure 2(a), we
show the mapping of the processes in the row and column sub-communicators
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to the physical torus on BG/L. This example considers a system size of 512 pro-
cesses, with the row sub-communicator containing 32 processes and the column
sub-communicator containing 16 processes, i.e., a 32×16 process grid. Thus, the
first row would have processes 1 to 32, the second row would have processes 33
to 64 and so on.

1

1 2 3 4 5 6 7
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10 11 12 13 14 15 16

2423222120191817

25 26 27 28 29 30 31 32

9

87654321

11 12 13 14 15 16 17
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1

2

1 1

2 2

1

2

Fig. 2. (a) Mapping the row and column communicator processes in a 2D process grid
to a 3D torus; (b) Jumpshot’s communicator view on P3DFFT’s communication.

Note that the size of different dimensions in the BG/L torus is fixed based
on the available allocation. In this case, we pick a torus topology of 8×8×8.
Therefore, the first row of processes in the process grid (1 to 32) map to the
first four physical rows on the BG/L torus (shown as red circles in Figure 2(a)).
Similarly, the second row of processes in the process grid (33 to 64) map to the
next four physical rows (shown as pink rectangles). It is to be noted that all
processes in the row communicator are always allocated adjacent to each other.
That is, any communication within the row sub-communicator will not require
the message to go outside these four rows.

The mapping of the processes corresponding to the column communicator is,
unfortunately, more complicated than the row communicator. Processes corre-
sponding to the first column are 1, 33, 65, 97, etc. These processes are not all
topologically adjacent. In other words, as shown in Figure 2, messages travers-
ing the non-adjacent portions of the column communicator have to pass through
more links, oftentimes contending with messages from other communicators, and
can thus saturate the network significantly faster as compared to the row com-
municator.

4.3 Communication Characterization of P3DFFT

Consider a 3D data grid of size N =nx×ny×nz which needs to be solved on a
system with P processes. P3DFFT decomposes the 3D grid into a 2D processor
mesh of size Prow×Pcol, where Prow×Pcol =P . It splits the 2D processor mesh into
two orthogonal sub-communicators—one in each dimension. Thus, each process
will be a part of a row and a column sub-communicator. As shown in Figure 2(b),
the first global transpose of the forward 3D-FFT consists of nz/Pcol iterations
of MPI Alltoallv over the row sub-communicator (the short red states), with
the message count per process-pair being mrow defined in Equation 2. The total
message count per process for the first transpose becomes nx ·ny ·nz/(Prow ·Pcol).
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mrow =
nx · ny

P 2

row

=
N

nz · P 2

row

(2)

The second global transpose consists of one single iteration of MPI Alltoallv

over the column communicator (the long red states in Figure 2(b)), with message
count per process being nx · ny · nz/(Prow · Pcol), which is the same as the first
transpose. The corresponding message count per process-pair is mcol, where

mcol =
nx · ny · nz

Prow · Pcol · Pcol

=
N · Prow

P 2
(3)

The total communication cost for the two global transposes becomes:

T (nz, Prow) =
nz

Pcol

· Trow (mrow) + Tcol (mcol)

=
nz · Prow

P
· Trow

(

N

nz · P 2
row

)

+ Tcol

(

N · Prow

P 2

) (4)

where Trow() and Tcol() are functions of communication latency for the row
and column communicators. The 2D processor decomposition and the symme-
try requirement of the real-to-complex 3D-FFT together demands the following
conditions:

nz

Pcol

≥ 1,
ny

Prow

≥ 1, and
nx

Prow

≥ 2 (5)

Prow and nz are chosen as independent variables that affect the total commu-
nication time. Prow can take different values depending on how the processors
are arranged as a 2D processor mesh, while satisfying the validity conditions
presented in Equation 5. As Prow decreases, Pcol could become bigger than nz

and violates the first condition in Equation 5. However, by rotating this grid,
the values of nx and nz can be interchanged to maintain the inequality as Prow

decreases further. We will study this possibility in our experiments later.

4.4 Understanding the Trends in P3DFFT Performance

The total communication time in P3DFFT is impacted by three sets of variables:
(i) message size, (ii) communicator size and (iii) congestion in the communica-
tor topology. The first two variables (message size and communicator size) are
directly related to the Prow parameter described in Equation 4. The third param-
eter, however, depends on the physical topology of the processes present in the
communicator and their communication pattern, as these conditions determine
how many messages share the same link on the torus network.

P3DFFT internally uses MPI Alltoallv to transpose the data grid. For most
implementations of MPI, including the one on Blue Gene, this is implemented as
a series of point-to-point communication operations, with each process sending
and receiving data to/from every other process in the communicator. For this
communication pattern, even in a communicator where all the processes are
topologically adjacent (row communicator), the number of messages that need
to traverse the same network link in the torus network can increase quadratically.
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Fig. 3. MPI Alltoallv Congestion Behavior

Figure 3 illustrates this behavior. Let us consider a torus of 8 × 8 × 8
processes. For a row communicator with only 2 processes, the two processes just
exchange data between each other. Thus, there is only one message per link in
each direction (BG/L links are bidirectional). For a row communicator with 4
processes, the exchange is more complicated with the busiest link serving up to 4
messages in each direction. Though not represented in Figure 3, it can be shown
that the number of messages traversing the busiest link in each direction increases
quadratically with increasing communicator size. The exception to this rule is
when one dimension of the torus completes. For example, for a communicator
with 8 processes, the first dimension in the torus is fully utilized; thus, since
BG/L uses a 3-D torus, this would mean that these processes can use an extra
wrap-around link along this dimension. In this case, the maximum number of
messages on the busiest link would be half the value it would have been without
this wrap-around link.

In summary, if the first dimension of the torus has a processors, for com-
municator sizes of 1, 2, 4, ..., a/2, a, the number of messages on the busiest
link would increase as 1, 4, 16, ..., (a/4)2, (a/2)2 × 2, i.e., a quadratic increase
in congestion with increasing communicator size. This trend continues for the
second and third dimensions as well. Using this analysis, we can observe that a
small system that has a torus configuration of 8 × 8 × 8 would have a much
smaller amount of congestion as compared to a large system that has a torus
configuration of 8 × 32 × 16.

The top 4 graphs in Figure 5 illustrate the total bandwidth per process
achieved by MPI Alltoallv for different message sizes on a small system (P =
512). The diamonds and triangles marked on the figures show the different mes-
sage sizes (and corresponding bandwidths) that are used within P3DFFT for
data grid configurations of 512×512×128 and 128×512×512. We notice that as
long as the message size is larger than about 1 KB, both the row and column
communicator achieve the peak bandwidth; thus, for best performance, it is pre-
ferred that a large message size be used. However, as illustrated in Equation 4,
when Prow becomes large, the message size used by the row communicator drops
quadratically. This causes it to use a very small message size for large Prow values
resulting in the network not being saturated, and consequently performance loss.
Thus, a small Prow value is preferred. For large systems (P = 4096), the large
impact of congestion, as described above, can be observed in the bottom 4 graphs
in Figure 5. The congestion causes a two-fold difference in the MPI Alltoallv

bandwidths achieved by the row and column communicators.
In the network saturation region, the time taken by MPI Alltoallv can be

approximated as a linear function, i.e. Tsub(msub) ≈ αsub · (r · msub) + βsub

where sub is the sub-communicator label for either row or col, and r is the
precision of the datatype that r · msub is the message size in byte. In order
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Fig. 4. Plots of scaled slope, S(), and intercept, I(), of asymptotic fit of the latency
of the MPI Alltoallv at P=512,1024,2048,4096. The graphs show that the slope and
intercept scales with the subcommunicator size in a meaningful way.

to use the asymptotic function meaningfully, we investigated how the α and β
change with their corresponding sub-communicator size. The results are shown
in Figure 4. Notice that the Y-axes of both pictures are divided by the size of the
sub communicator. This is necessary to scale out the effect of the communicator
size. Four system sizes, P = 512, 1024, 2048, 4096 are plotted in the figures. They
all overlap nicely to some universal functions. The scaled slope and intercept
functions will be called S(Psub) and I(Psub) respectively. They are defined as

S (Psub) =
αsub (Psub)

Psub

and I (Psub) =
βsub (Psub)

Psub

(6)

For small systems P = 512, 1024, S(Psub) increases linearly in Psub = 1, 2, 4 and
then becomes a constant afterward. But for system P = 1024 which is similar
to P = 512, except a step jump appears from Psub = 16 to Psub = 32. For
P = 2048, S(Psub) increases linearly in Psub = 1, 2, 4, 8, and then stays as a
constant afterward. For P = 4096 which is similar to P = 2048, except with a
step jump from Psub = 32 to Psub = 64. We believe the step jumps are due to
the sudden increase of contention as Psub’s topology changes as explained earlier
in this section.

With Equations 6, 2 and 3, Equation 4 can be simplified to

T (nz, Prow) ≈
nz

Pcol

(αrow(r · mrow) + βrow) + (αcol(r · mcol) + βcol)

=
nz

Pcol

(

αrow

Prow

rN

nzProw

+ βrow

)

+

(

αcol

Pcol

rN

P
+ βcol

)

= r

[

S (Prow) + S

(

P

Prow

)]

N

P
+ I (Prow)nz

P 2

row

P
+ I

(

P

Prow

)

P

Prow

(7)
The T (nz, Prow) is linear in nz but its dependence on Prow is rather compli-

cated. Since the behaviors of S() and I() in Psub are known from Figure 4, we
can reasonably describe how the total transpose time changes with Prow. Based
on Figure 4, S() is always positive and monotonic in Psub. For large systems
(P = 4096), S() < 0.035. For small systems (P = 512), S() < 0.007. I() is more
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of less a positive constant of order O(10) except the big negative spike occurs
at Psub = 64. For the system parameters being considered here, we are mainly
interested in Prow <

√
P , each term in Equation 7 can be estimated as follows:

1st
term

∝
N

P
≫ P,

2nd
term

∝ nz

P 2

row

P
< nz < P,

3rd
term

∝ Pcol < P

However, all the terms in Equation 7 are made equally important by S() ≪ I().
For simplicity, let’s ignore any terms that is O(P 2

row) or higher and consider
the small Prow limit, where S(Prow) → s0 · Prow, S(P/Prow) → S∞, and
I(P/Prow) → I∞. Equation 7 can be approximated as:

T (nz, Prow) ≈ r [s0 · Prow + S∞]
N

P
+ I∞

P

Prow

(8)

=⇒ Pmin
row = P

√

I∞
rs0N

and T (nz, P
min
row ) ≈ rS∞

N

P
+ 2

√

rs0NI∞ (9)

Pmin
row is where the minimum of T (nz, Prow) occurs.

For N =512×512×128 and P = 512, r = 4, s0 ∼ 0.002, S∞ ∼ 0.007, I∞ ∼ 3,
then Pmin

row ∼
√

3 ∼ 1.73 and T (nz, P
min
row ) ∼ 3.5 msec. For N =2048×2048×512

and P = 4096, r = 4, s0 ∼ 0.002, S∞ ∼ 0.035, I∞ ∼ 7, then Pmin
row ∼ 2

√
7 ∼ 5.3

and T (nz, P
min
row ) ∼ 93 msec. Both predicted T (nz, P

min
row ) values are within few

percents of the actual measured experimental values.
For more accurate estimation, O(P 2

row) terms and the full features of S() and
I() are all needed. I() has a negative spike of O(102) at Prow = 64 =

√
P as

in Figure 4. The negative spike will certainly produce a local minimum of total
transpose time for N = 4096. If the flat cartesian grid is rotated to increase nz

to avoid violating the validity conditions in Equation 5, Prow can get a lot closer
to 1. Also, the discrete jumps seen in S() in Figure 4 could be reflected in the
observed total trasnpose time as sudden jump seen in the corresponding S().

5 Experimental Evaluation and Analysis

In this section, we experimentally evaluate the P3DFFT library using a fortran
physics program4 that uses a flat cartesian mesh. Specifically, in this program,
some of the variables only have x- and y-components, but no z-component. This
means that the physical system emulated by this program is a quasi-2D system
with preferential treatment in the z-axis. Therefore, our analysis of total commu-
nication time with respect to change in Prow in Equation 7 is applicable to this
program, but not the communication analysis with respect to change in nz. This
is because the variation in Prow and Pcol affects only the MPI Alltoallv used
in the two global transposes employed by the 3D-FFT which is being applied
uniformly to all variables. In order words, the variation of the fortran program
with respect to Prow is equivalent to the variation of 3D-FFT algorithm. But the

4 The program, provided by Joerg Schumacher, has been modified for our benchmark-
ing purpose.
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Fig. 5. Total bandwidth per process vs message size of small (P = 512) and large
systems (P = 4096).
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variation of the fortran program with respect to nz includes both the variation
of the 3D-FFT algorithm and the special asymmetric treatment of the z-axis in
the phyical problem. In Section 5.1, we first observe the communication behavior
for a small half-rack (512-node) system and verify our analysis. Then, in Sec-
tion 5.2, we utilize this understanding to evaluate and optimize the performance
of P3DFFT for a large-scale system.

5.1 Communication Analysis on a Small-scale System

In this section, a small BG/L system of 512 nodes is used to study the behavior
of P3DFFT. These 512 nodes form a regular torus of 8×8×8 dimensions. We
ran our fortran program that uses the P3DFFT library with various data grid
configurations on different processor mesh arrangements. Table 1 presents the
timing data from this run.

Table 1. Timing of the fortran P3DFFT program (in second) with P =512 (8×8×8
torus). P: Processor mesh configuration. N: FFT data grid configuration.

P \ N 256×256×64 64×256×256 512×512×128 128×512×512

8×64 1.294 1.37 9.08 9.98

16×32 1.276 1.65 9.08 10.73

32×16 1.41 2.34 9.62 11.86

64×8 1.74 10.66 15.01

Four data grid configurations (256×256×64, 64×25×256, 512×512×128
and 128×512×512), and four different processor mesh decompositions (8×64,
16×32, 32×16 and 64×8), were attempted on the 512-node system. In Table 1,
we can see that the best timing for each data grid configuration occurs at the
processor-mesh with the shortest row dimension, i.e., shortest Prow. Also, we
see that the fortran program is taking longer to finish as Prow increases. Both
features are consistent with our findings with Equation 8 in the last section.

5.2 Evaluation on a Large-scale System

In this section, we evaluate the performance of P3DFFT on a large-scale (16-
rack or 16384-node) BG/L system. Specifically, we evaluated the performance
of a 2048×2048×512 data grid, with different processor-mesh configurations, on
4 racks (4096 nodes), 8 racks (8192 nodes) and 16 racks (16384 nodes). For the
4-rack system, we also tried out two different torus topologies (16×32×16 and
16×16×16). Further, we also study the impact of rotating the data grid.

Tables 7, 6, 4 and 3 show the performance results for the different system
sizes and configurations with our fortran test program. All these results indicate
that the best performance occurs at the smallest Prow and largest nz, i.e. rotated
data grid, shown in the tables, when the number of processors P and the problem
size N (FFT data grid size) are fixed. The small Prow giving the best performance
is consistent with our findings of Equation 8. The best performance occuring at
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largest nz for fixed problem size N is more a feature of the physics problem
being solved in the fortran program and not a feature of P3DFFT as explained
in the beginning of section 5.

Table 2. Timing from fortran P3DFFT program (in second) with one processor size
4096 but different torus configurations. P: Processor mesh configuration. N: FFT data
grid configuration.

Table 3. P = 4096 (16×16×16 torus)

P \ N 2048×2048×512 512×2048×2048

16×256 185.9 151.2

64×64 179.2

256×16 194.1

Table 4. P = 4096 (8×32×16 torus)

P \ N 2048×2048×512 512×2048×2048

8×512 215.2 181.36

32×128 218.4 190.4

64×64 201.7 179.3

128×32 198.2 194.4

512×8 239.1

Tables 4 and 3 show the performance numbers of the fortran with the same
problem sizes (2048×2048×512 and 512×2048×2048) and the same number of nodes
(4096 nodes). The only difference between these two tables is that the different
torus configurations are used. Table 4 is evaluated on a 8×32×16 torus, while
Table 3 is evaluated on a 16×16×16 torus. The fastest performance at 64×64 can
be explained by the big negative spike of I() seen in Figure 4 and Equation 7. We
notice that for the processor-mesh, 64×64, P3DFFT is 10% faster in the 16×16×16
torus as compared to the 8×32×16 torus. The reason for this behavior is the
layout of the column communicator as described in Section 4.2. Specifically, in
the 8×32×16 torus configuration, each row (64 processes) takes up eight physical
rows on the torus. Thus, the processes in the column communicator can be up
to 8 rows apart. On the other hand, in the 16×16×16 torus configuration, each
row takes up only four rows, thus reducing the distance between the processes
in the column communicator and consequently improving their performance.

Table 5. Timing from fortran P3DFFT program (in second) with two different pro-
cessor sizes, 8192 and 16384. P: Processor mesh configuration. N: FFT data grid con-
figuration.

Table 6. P = 8192 (16×32×16 torus)

P \ N 2048×2048×512 512×2048×2048

16×512 146.5 113.1

64×128 142.5 115.3

128×64 144.3 125.7

512×16 165.0

Table 7. P = 16384 (32×32×16 torus)

P \ N 2048×2048×512 512×2048×2048

16×1024 79.6

32×512 117.9 84.4

128×128 118.1 91.1

512×32 128.2

1024×16 160.1

Next, let us consider Table 6 that shows the performance for 8192 processors.
If we notice the 2048×2048×512 FFT data grid configuration, we see that in this
case, the smallest value of Prow (16×512 configuration) does not provide the best
performance. Instead, 64×128 provides a better performance. This again can be
explained by the big negative spike of I() seen in Figure 4 and Equation 7. This
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suggests 8192 processor configuration is similar to the non-cubical torus 4096
processor configuration discussed earlier in Equation 8 with the existence of at
least two optimal configurations. Comparing the performance impact of the data
grid rotation from the 2048×2048×512 configuration to the 512×2048×2048
configuration, we notice that the performance improves by about 26%. Not all
the improvement is from the communication time.

The final result we present is for the large 16-rack (16384-node) system. We
notice that this case is a little different from the 4-rack (4096-node) and the
8-rack (8192-node) results where two optimal configurations can be obtained.
However, the overall performance is still consistent with the other results. That
is, performance improves with decreasing Prow and with increasing nz. Specifi-
cally, reducing Prow can improve performance by about 15% as compared to the
default 128×128 processor mesh configuration. Increasing nz, on the other hand,
can improve performance by close to 48%.

Based on all the experimental results, we notice that there could be multiple
optimal system configurations, two possible ones are 1) small Prow in rotated
data grid with larger nz. 2) Prow ≃

√
P in the regular data grid with smaller

nz. The later optimal configuration may not exist in all system sizes and config-
urations. But the first optimal configuration seems to always exist. Rotating the
FFT data grid furthers the path of performance improvements that have been
stopped by Equation 5. This indicates that as we move to even larger problem
sizes, the lessons learnt in this paper will have increasingly higher importance.

6 Concluding Remarks and Future Work

P3DFFT is a recently proposed implementation of parallel 3D FFT for large-
scale systems such as IBM Blue Gene. While there have been a lot of studies that
demonstrate the scalability of P3DFFT on regular cartesian meshes (where all
dimensions are equal in length), there seems to be no previous work that studies
its scalability for flat cartesian meshes (where the length of one dimension is
much smaller than the rest). In this paper we studied the performance and
scalability of P3DFFT for flat cartesian meshes on a 16-rack (16384-node) Blue
Gene system and demonstrated that a combination of the network topology and
the communication pattern of P3DFFT can result in parts of the communication
to over-saturate the network, while other parts under-utilize the network. This
can cause overall loss of performance on large-scale systems. We further showed
that remapping processes on nodes and rotating the FFT data grid by taking
the communication properties of P3DFFT into consideration, can help alleviate
this problem and improve performance by up to 48% in some cases.

While our work alleviates the issue of network saturation, it does not com-
pletely avoid it. For future work, we would like to further the study of alleviation
of network contention by rotating the torus configuration through environment
variable BG MAPPING which allows user to rearrange process layout in the torus,
and we would also like to study the impact of split-collectives to hide communi-
cation time that can be aggravated due to such saturation.
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